Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter J. Duggan, ${ }^{\text {a }}$ © Craig M. Forsyth, ${ }^{\text {b }}$ Andris J. Liepa, ${ }^{\text {a }}$ C. Elisabet Tranberg ${ }^{\text {a }}$ and Andrew C. Warden ${ }^{\text {a }}$
${ }^{\text {a }}$ CSIRO Molecular and Health Sciences, Bag 10, Clayton South, Victoria 3169, Australia, and ${ }^{\mathbf{b}}$ School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

Correspondence e-mail: peter.duggan@csiro.au

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.087$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(4-Bromophenyl)(5-dimethylamino-1,1-dioxo-2-phenyl-1,2-dihydro-1 λ^{6},2,4,6-thiatriazin-3-yl)methanone

The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{~S}$, was formed by baseassisted N -alkylation of (1,1-dioxo-2-phenyl-2,3-dihydro- 1 H $1 \lambda^{6}, 2,3,5$-thiatriazol-4-yl)dimethylamine with p-bromophenacyl bromide, followed by ring expansion and aerial oxidation to form an unusual 5 -acyl-substituted 3 -amino-1,1-dioxo-1,2,4,6-thiatriazine. The thiatriazine ring adopts an envelope conformation, with the S atom displaced by 0.308 (2) \AA from the plane of the other five atoms.

Comment

We have been investigating methods for the preparation of a diverse range of sulfur-containing heterocycles with potential biological activity (Fallon, Jahangiri et al., 2005; Fallon, Francis et al., 2005). We recently reported the structure of a 1,1 -dioxo-1,2,4,6-thiatriazine obtained from the base-assisted N -alkylation of $\{2$-(3,5-dichlorophenyl)-1,1-dioxo-2,3-dihydro- 1 H $1 \lambda^{6}-[1,2,3,5]$ thiatriazol-4-yl\}dimethylamine with methyl 2 bromopropanoate, followed by a novel base-promoted ringexpansion reaction (Duggan et al., 2005). We report here the structure of the product obtained from a similar reaction, this time between the thiazole, (I), and p-bromophenacyl bromide, using a stepwise addition of NaHCO_{3} and $\mathrm{K}_{2} \mathrm{CO}_{3}$. As in the previous example, the lack of contiguous NMR-responsive nuclei in the product meant that an X-ray structural study was necessary to confirm the identity of the product. Crystals suitable for X-ray analysis were formed by crystallization from dichloromethane/ethyl acetate (1:1). X-ray analysis confirmed that the product was the title 1,2,4,6-thiatriazine dioxide, (II).

The molecular structure of (II) is shown in Fig. 1. The thiatriazine heterocycle adopts an envelope conformation, with atom S1 0.308 (2) \AA out of the N2/C2/N3/C1/N1 plane. The N2/S1/N1 plane subtends an angle of 17.5 (1) ${ }^{\circ}$ with the above plane. This confirms the non-aromatic character of this unsaturated heterocycle and is consistent with that observed in a related 3-methoxy-1,1-dioxo-1,2,4,6-thiatriazine (Hamprecht et al., 1985). The short C2-N4 bond length of 1.328 (3) \AA and the coplanarity of the guanidinium-type unit defined by C17/N4/C16/C2/N2/N3 indicate significant conju-

Figure 1
View of the molecular structure of (II) (50\% probability displacement ellipsoids) showing the atom numbering scheme.

Figure 2
View of the crystal structure of (II) showing π-stacking interactions. H atoms have been omitted.
gation in this region. The shorter $\mathrm{S} 1-\mathrm{N} 2$ bond length of 1.561 (2) A suggests that this bond is also partially conjugated with the above system. A similar effect is not observed with the $\mathrm{S} 1-\mathrm{N} 1$ bond, presumably because the torsion angle N3$\mathrm{C} 1-\mathrm{C} 3-\mathrm{O} 3$ is 95.5 (2) $)^{\circ}$, thus limiting conjugation. This is also consistent with the unusually long bond length for adjacent $\mathrm{Csp} p^{2}$ atoms of 1.528 (3) \AA, seen for the $\mathrm{C} 1-\mathrm{C} 3$ bond.

Interestingly, in the crystal structure of (II), there appears to be intermolecular π stacking occurring between the guanidinium region centred on $\mathrm{C} 2, \mathrm{~N} 4$ in another molecule and the
non-brominated phenyl ring of a third molecule, as indicated in Fig. 2.

A publication detailing the scope of the uncommon ringexpansion reaction that produced compound (II) is currently in preparation.

Experimental

The title compound was prepared from the phenylthiatriazole dioxide, (I) ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$), by an initial 5 min treatment with $\mathrm{NaHCO}_{3}(42 \mathrm{mg}, 0.50 \mathrm{mmol})$ in N, N-dimethylformamide (1 ml) at room temperature, followed by the addition of p-bromophenacyl bromide ($139 \mathrm{mg}, 0.50 \mathrm{mmol}$) dissolved in N, N-dimethylformamide $(0.5 \mathrm{ml})$. The mixture was stirred at room temperature for $2 \mathrm{~h} . \mathrm{K}_{2} \mathrm{CO}_{3}$ ($71 \mathrm{mg}, 0.51 \mathrm{mmol}$) was then added and stirring was continued for a further 5 d . The reaction mixture was diluted with water (5 ml) and diethyl ether (2 ml), and then extracted with $\mathrm{CHCl}_{3}(3 \times)$, and the combined organic layers were washed with water $(2 \times)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to yield the product (102 mg , 56%) as an orange foam. A sample was further purified by radial chromatography using a hexane/ethyl acetate solvent gradient then recrystallized from dichloromethane/ethyl acetate (1:1) to give colourless needles suitable for X-ray analysis. m / z (APCI, +ve, $\mathrm{MeOH}: \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ 2:1:1) 435, 437 (M+1). Analysis, calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{~S}$: C 46.91, H 3.47, N 12.87, S 7.37\%; found: C 47.17, H 3.53 , N 12.89 , S 7.08%. M.p. $427-429 \mathrm{~K}$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{4} \mathrm{O}_{3} \mathrm{~S}$	$Z=8$
$M_{r}=435.3$	$D_{x}=1.631 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, C2/c	Mo $K \alpha$ radiation
$a=23.4478(3) \AA$	$\mu=2.46 \mathrm{~mm}^{-1}$
$b=10.0971(2) \AA$	$T=123(2) \mathrm{K}$
$c=15.2847(2) \AA$	Block, colourless
$\beta=101.518(1)^{\circ}$	$0.25 \times 0.25 \times 0.1 \mathrm{~mm}$
$V=3545.85(10) \AA^{3}$	
Data collection	
Nonius KappaCCD diffractometer	18424 measured reflections
Absorption correction: empirical	4071 independent reflections
(using intensity measurements)	3411 reflections with $I>2 \sigma(I)$
(SORTAV; Otwinowski \& Minor,	$R_{\text {int }}=0.042$
1997)	$\theta_{\text {max }}=27.5^{\circ}$
$T_{\text {min }}=0.578, T_{\text {max }}=0.791$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$S=1.05$
4071 reflections
237 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.044 P)^{2}\right. \\
& \quad+4.5742 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.15 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}
\end{aligned}
$$

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $0.98 \AA$, and included in the refinement in the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. The highest residual density peak is located 0.93 Å from atom Br 1 .

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: X-SEED (Barbour, 2001); program(s) used to solve structure:

organic papers

SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

The Australian Research Council is acknowledged for funding the purchase of the diffractometer used in this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191
Duggan, P. J., Fallon, G. D. \& Liepa, A. J. (2005). Acta Cryst. E61, o2694o2695.

Fallon, G. D., Francis, C. L., Johansson, K., Liepa, A. J. \& Woodgate, R. C. J. (2005). Aust. J. Chem. 58, 891-900

Fallon, G. D., Jahangiri, S., Liepa, A. J. \& Woodgate, R. C. J. (2005). Aust. J. Chem. 58, 332-338.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Hamprecht, G., Acker, R.-D. \& Hädicke, E. (1985). Liebigs Ann. Chem. pp. 2363-2370
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Persistence of Vision (2004). Persistence of Vision Raytracer. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

