organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter J. Duggan,^a* Craig M. Forsyth,^b Andris J. Liepa,^a C. Elisabet Tranberg^a and Andrew C. Warden^a

^aCSIRO Molecular and Health Sciences, Bag 10, Clayton South, Victoria 3169, Australia, and ^bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia

Correspondence e-mail: peter.duggan@csiro.au

Key indicators

Single-crystal X-ray study T = 123 K Mean σ (C–C) = 0.003 Å R factor = 0.034 wR factor = 0.087 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(4-Bromophenyl)(5-dimethylamino-1,1-dioxo-2-phenyl-1,2-dihydro-1 λ^6 ,2,4,6-thiatriazin-3-yl)methanone

The title compound, $C_{17}H_{15}BrN_4O_3S$, was formed by baseassisted *N*-alkylation of (1,1-dioxo-2-phenyl-2,3-dihydro-1*H*- $1\lambda^6$,2,3,5-thiatriazol-4-yl)dimethylamine with *p*-bromophenacyl bromide, followed by ring expansion and aerial oxidation to form an unusual 5-acyl-substituted 3-amino-1,1-dioxo-1,2,4,6-thiatriazine. The thiatriazine ring adopts an envelope conformation, with the S atom displaced by 0.308 (2) Å from the plane of the other five atoms.

Comment

We have been investigating methods for the preparation of a diverse range of sulfur-containing heterocycles with potential biological activity (Fallon, Jahangiri et al., 2005; Fallon, Francis et al., 2005). We recently reported the structure of a 1,1-dioxo-1,2,4,6-thiatriazine obtained from the base-assisted N-alkylation of {2-(3,5-dichlorophenyl)-1,1-dioxo-2,3-dihydro-1H- $1\lambda^{6}$ -[1,2,3,5]thiatriazol-4-yl}dimethylamine with methyl 2bromopropanoate, followed by a novel base-promoted ringexpansion reaction (Duggan et al., 2005). We report here the structure of the product obtained from a similar reaction, this time between the thiazole, (I), and *p*-bromophenacyl bromide, using a stepwise addition of NaHCO₃ and K₂CO₃. As in the previous example, the lack of contiguous NMR-responsive nuclei in the product meant that an X-ray structural study was necessary to confirm the identity of the product. Crystals suitable for X-ray analysis were formed by crystallization from dichloromethane/ethyl acetate (1:1). X-ray analysis confirmed that the product was the title 1,2,4,6-thiatriazine dioxide, (II).

The molecular structure of (II) is shown in Fig. 1. The thiatriazine heterocycle adopts an envelope conformation, with atom S1 0.308 (2) Å out of the N2/C2/N3/C1/N1 plane. The N2/S1/N1 plane subtends an angle of 17.5 (1)° with the above plane. This confirms the non-aromatic character of this unsaturated heterocycle and is consistent with that observed in a related 3-methoxy-1,1-dioxo-1,2,4,6-thiatriazine (Hamprecht *et al.*, 1985). The short C2—N4 bond length of 1.328 (3) Å and the coplanarity of the guanidinium-type unit defined by C17/N4/C16/C2/N2/N3 indicate significant conju-

© 2006 International Union of Crystallography All rights reserved Received 24 July 2006 Accepted 7 August 2006

Figure 1

Figure 2

View of the crystal structure of (II) showing π -stacking interactions. H atoms have been omitted.

gation in this region. The shorter S1–N2 bond length of 1.561 (2) Å suggests that this bond is also partially conjugated with the above system. A similar effect is not observed with the S1–N1 bond, presumably because the torsion angle N3–C1–C3–O3 is 95.5 (2)°, thus limiting conjugation. This is also consistent with the unusually long bond length for adjacent Csp^2 atoms of 1.528 (3) Å, seen for the C1–C3 bond.

Interestingly, in the crystal structure of (II), there appears to be intermolecular π stacking occurring between the guanidinium region centred on C2, N4 in another molecule and the non-brominated phenyl ring of a third molecule, as indicated in Fig. 2.

A publication detailing the scope of the uncommon ringexpansion reaction that produced compound (II) is currently in preparation.

Experimental

The title compound was prepared from the phenylthiatriazole dioxide, (I) (100 mg, 0.42 mmol), by an initial 5 min treatment with NaHCO₃ (42 mg, 0.50 mmol) in N,N-dimethylformamide (1 ml) at room temperature, followed by the addition of *p*-bromophenacyl bromide (139 mg, 0.50 mmol) dissolved in N,N-dimethylformamide (0.5 ml). The mixture was stirred at room temperature for 2 h. K₂CO₃ (71 mg, 0.51 mmol) was then added and stirring was continued for a further 5 d. The reaction mixture was diluted with water (5 ml) and diethyl ether (2 ml), and then extracted with $CHCl_3$ (3×), and the combined organic layers were washed with water $(2\times)$, dried $(MgSO_4)$, filtered and concentrated to yield the product (102 mg, 56%) as an orange foam. A sample was further purified by radial chromatography using a hexane/ethyl acetate solvent gradient then recrystallized from dichloromethane/ethyl acetate (1:1) to give colourless needles suitable for X-ray analysis. m/z (APCI, +ve, MeOH:CH₃CN:H₂O 2:1:1) 435, 437 (M+1). Analysis, calculated for C17H15BrN4O3S: C 46.91, H 3.47, N 12.87, S 7.37%; found: C 47.17, H 3.53, N 12.89, S 7.08%. M.p. 427-429 K.

Crystal data C17H15BrN4O3S Z = 8 $M_{\rm r} = 435.3$ $D_x = 1.631 \text{ Mg m}^{-3}$ Monoclinic, C2/c Mo $K\alpha$ radiation a = 23.4478 (3) Å $\mu = 2.46 \text{ mm}^{-1}$ b = 10.0971 (2) Å T = 123 (2) K c = 15.2847 (2) Å Block, colourless $\beta = 101.518(1)^{\circ}$ $0.25 \times 0.25 \times 0.1 \text{ mm}$ $V = 3545.85 (10) \text{ Å}^3$

Data collection

Nonius KappaCCD diffractometer	18424 measured reflections
Absorption correction: empirical	4071 independent reflections
(using intensity measurements)	3411 reflections with $I > 2\sigma(I)$
(SORTAV; Otwinowski & Minor,	$R_{\rm int} = 0.042$
1997)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.578, \ T_{\max} = 0.791$	

Refinement

N

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.044P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.035$	+ 4.5742P]
$wR(F^2) = 0.087$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
4071 reflections	$\Delta \rho_{\rm max} = 1.15 \text{ e } \text{\AA}^{-3}$
237 parameters	$\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

H atoms were placed in calculated positions, with C–H distances ranging from 0.95 to 0.98 Å, and included in the refinement in the riding-model approximation with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$, or $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ for methyl H atoms. The highest residual density peak is located 0.93 Å from atom Br1.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO*–SMN (Otwinowski & Minor, 1997); data reduction: *X-SEED* (Barbour, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

The Australian Research Council is acknowledged for funding the purchase of the diffractometer used in this study.

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- Duggan, P. J., Fallon, G. D. & Liepa, A. J. (2005). Acta Cryst. E61, o2694o2695.

- Fallon, G. D., Francis, C. L., Johansson, K., Liepa, A. J. & Woodgate, R. C. J. (2005). Aust. J. Chem. 58, 891–900.
- Fallon, G. D., Jahangiri, S., Liepa, A. J. & Woodgate, R. C. J. (2005). Aust. J. Chem. 58, 332–338.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hamprecht, G., Acker, R.-D. & Hädicke, E. (1985). Liebigs Ann. Chem. pp. 2363-2370.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Persistence of Vision (2004). Persistence of Vision Raytracer. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.